
Pwning Adobe Reader

Abusing the Reader’s embedded XFA
engine for reliable Exploitation

Sebastian Apelt
sebastian.apelt@siberas.de

2016/04/08

© siberas 2016 | 2 / 65

 whoami

 Motivation

 (Short!) Introduction to XFA

 XFA Internals
• XFA Objects

• jfCacheManager

 Exploiting the Reader

 Demo

 Conclusion

 Q&A

Agenda

© siberas 2016 | 3 / 65

 Sebastian Apelt (@bitshifter123)

 Co-Founder of siberas in 2009

• IT-Security Consulting (Pentests, Code Audits, etc.)

• Research

 Low-level addict

• Reverse Engineering, Bughunting, Exploitation

• > 100 CVEs in all kinds of Products

• Pwn2Own 2014 (IE11 on Win8.1 x64)

whoami

© siberas 2016 | 4 / 65

Motivation

© siberas 2016 | 5 / 65

 Fuzzing at siberas

• Let‘s pwn the Reader @ Pwn2Own 2016!!

• Unfortunately, no love for Reader this time

• In 2015: XFA fuzzing on 128 cores

• Fuzz run yielded thousands of crashes

• So far ~ 20 Bugs identified as unique (upcoming)

• Analysis took ages…

• Let‘s take a look at a typical Reader crash!

Motivation

© siberas 2016 | 6 / 65

0:000> !heap -p -a ecx
address 07b2f3cc found in
_HEAP @ 11a0000
HEAP_ENTRY Size Prev Flags UserPtr UserSize - state
07b24eb0 199c 0000 [00] 07b24eb8 0ccd8 - (busy)

(72fc.72ec): Access violation - code c0000005 (!!! second chance !!!)
eax=69572c30 ebx=00000002 ecx=07b2f3cc edx=05658af8 esi=0549e538 edi=07b2f3cc
eip=20a29654 esp=0031d8c4 ebp=00000003 iopl=0 nv up ei pl nz na
cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00210206

AcroForm!DllUnregisterServer+0x2f73ce:
20a29654 mov edx,dword ptr [eax] ds:002b:69572c30=????????

Motivation

Awesome, we have a crash!

But no useful function name
(DllUnregisterServer??)

The object holding the bad
reference is located in the
middle of a huge buffer
=> Page Heap useless

Stacktrace also not helpful

Offset 0xa514 !?

0:000> kc
AcroForm!DllUnregisterServer+0x2f73ce
AcroForm!DllUnregisterServer+0x2f7212
AcroForm!DllUnregisterServer+0x2f7504
AcroForm!DllUnregisterServer+0x35f3ae
AcroForm!DllUnregisterServer+0x358f50

© siberas 2016 | 7 / 65

 Adobe Reader => No symbols / RTTI infos!

• No function names

• No object / vtable information

• No meaningful stacktraces

• Page Heap useless

 Root cause analysis is very hard without context

 Complicates crash triaging during fuzz runs

Motivation

© siberas 2016 | 8 / 65

 How do we ANALYZE crashes in XFA?

 How do we EXPLOIT these crashes?

 Obvious: We need context! We need symbols!

 No in-depth research about XFA internals so far:

• Most useful: Writeups about XFA exploit from 2013
(David and Enrique of Immunity Inc, Matthieu Bonetti of
Portcullis Labs)

• Good technical analysis, but only scratching the surface

Motivation

© siberas 2016 | 9 / 65

 Write tools to recover contextual information

• Lower the bar for other researchers!

• Check https://github.com/siberas in the next days

 Facilitate:

• Vulnerability discovery and root cause analysis

• Crash triaging during fuzz runs

 Deliver XFA-specific background for exploitation

Motivation

© siberas 2016 | 10 / 65

(Short!) Introduction to XFA

© siberas 2016 | 11 / 65

 XFA: „XML Forms Architecture“

• Specification developed by JetForm, later Accelio
(acquired by Adobe in 2002) – not a standard

• Latest version: 3.3 (01/2012): Easy read of 1584 pages.

• Brings dynamic behavior to the static PDF world: Forms
that can dynamically change their layout!

• Dynamic nature of XFA is powered by Javascript
(Spidermonkey 24 since AR DC)

• XFA not supported by many PDF Readers, yet
(Chrome/Chromium, Firefox, Windows,...)

(Short!) Introduction to XFA

© siberas 2016 | 12 / 65

 XFA form data itself is an XML-structure embedded in
the PDF, a so-called XDP-Packet

 Javascript embedded in this XDP

• Executed upon events (e.g. document is fully loaded,
user clicks on button, etc.)

 A practical example…

(Short!) Introduction to XFA

© siberas 2016 | 13 / 65

<xdp:xdp xmlns:xdp="http://ns.adobe.com/xdp/">
<config xmlns:xfa="http://www.xfa.org/schema/xci/3.0/">

[…]
</config>
<template xmlns:xfa="http://www.xfa.org/schema/xfa-template/3.0/">

<subform layout="tb" name="form1">
<pageSet>

<pageArea id="PageArea1" name="PageArea1">
<contentArea w="612pt" h="792pt" x="20pt" y="20pt"/>

</pageArea>
</pageSet>
<field name="button1" w="41.275mm" h="9.525mm">

<ui>
<button highlight="inverted"/>

</ui>
[…]
<event activity="click" name="event__click">

<script contentType="application/x-javascript">
app.alert(1337);

</script>
</event>

[…]
</xdp:xdp>

(Short!) Introduction to XFA
XDP Packet is XML embedded in the PDF
The root tag is always „xdp“

Config DOM contains configuration
options for XFA processing

Template DOM is structured in subforms,
containing objects like „field“, „text“, etc.

Objects can contain event objects that fire
on certain actions (e.g. „click“)

© siberas 2016 | 14 / 65

 XFA spec defines multiple DOMs

• HUGE attack surface (> 200 objects accessible via JS)

(Short!) Introduction to XFA

template

Configuration Options

Tpl DOM: Objects which will be visible in the PDF

XML-Data that can be used to populate fields in the PDF

Template and Data are merged into Form DOM

Layout DOM makes layout information accessible

xdp

config

dataSets

form

layout

xdc

dataDesc

Device-specific information

sourceSet

dataDescription DOM: Data schema

DOM for DB- / WebService-Connections

© siberas 2016 | 15 / 65

XFA Internals

© siberas 2016 | 16 / 65

 Tweet by @nils

• Nice! Some Solaris build seems to have symbols!

• Newest version which still has symbols: Solaris v9.4.1

 We need a reliable heuristic to port symbols in
AcroForm.api (module which implements XFA
functionality) to newer AR versions

XFA Internals - General Approach

© siberas 2016 | 17 / 65

 Problems:

• Code is rather old (2012) -> Many Code changes from
v9.X to AR DC…

• Function count: Solaris ~48 K, AR DC ~ 95 K

• Functions differ even if code stays the same (compiler
optimizations like heavy inlining in v9.4.1 screw it up)

• Tried diffing with Diaphora – Too many false positives

• Structures, objects and vtable sizes differ (slightly, but
enough to make it very hard to create reliable heuristics)

• etc.

XFA Internals - General Approach

© siberas 2016 | 18 / 65

 Approach: Trying to understand Reader v9.4.1 as
much as possible with the help of symbols

 Find bulletproof ways to recover the most important
symbols, i.e.

• Heap Mgmt functions for the custom allocator

• Object information

XFA Internals - General Approach

© siberas 2016 | 19 / 65

 What do we need to know about objects?

• How to identify an object in memory

• Vtable offsets

• Methods and properties exposed to JavaScript

• Offsets of the entrypoints for methods / property-
getters and -setters

• Function names of vtable entries

XFA Internals - Objects

© siberas 2016 | 20 / 65

 First attempt: XFANode::getClassTag

 Fail! classTags not constant across versions!

XFA Internals - Objects: Identification

From Field constructor method:
classTag for Field-Object in
Adobe Reader 9.4.1: 0x86

classTag attribute can be
found @ <XFAobj> + 0x10

classTag for Field-Object in
Acrobat Reader DC: 0x8e

© siberas 2016 | 21 / 65

 <XFAObj>::Type method to the rescue

 Located @ vtable+8 of each XFA-Object

 Type-IDs are static across versions!

XFA Internals - Objects: Identification

Type is 0x7C46 for both v9.4.1
AND Acrobat Reader DC!

Adobe Reader 9.4.1

Acrobat Reader DC

© siberas 2016 | 22 / 65

 Possible to identify every object
by a binary pattern in newer
versions of AcroForm.api

• mov eax, 7C46h
retn
 B8 46 7C 00 00 C3

 Xref to the Type method gives us
the vtable offset (RVA) to each
object!

XFA Internals - Objects: Identification

We can safely identify 334
objects! Not too bad!

© siberas 2016 | 23 / 65

 What do we need to know about objects?

• How to identify an object in memory

• Vtable offsets

• Methods and properties exposed to JavaScript

• Offsets of the entrypoints for methods / property-
getters and -setters

• Function names of vtable entries

XFA Internals - Objects

© siberas 2016 | 24 / 65

 How about methods and properties?

 <XFAObj>::getScriptTable() @ vtable offset 0x34

 References moScriptTable structure

• Structure contains information about method and
property names, function pointers, etc.

XFA Internals - Objects

XFAFieldImpl::moScriptTable

© siberas 2016 | 25 / 65

XFA Internals - Objects

XFAContainerImpl::
moScriptTable

&„field“

Property-Table

Method-Table

XFAObjectImpl::
moScriptTable

&„tree“

Property-Table

Method-Table

XFANodeImpl::
moScriptTable

&„container“

Property-Table

Method-Table

XFATreeImpl::
moScriptTable

&„node“

Property-Table

Method-Table

0x00000000

&„object“

Property-Table

Method-Table

Ptr1 to property-struct

Ptr2 to property-struct

0x00000000

Ptr1 to method-struct

Ptr2 to method-struct

0x00000000

&„rawValue“

func-ptr setter

func-ptr getter

&„addItem“

func-ptr addItem

XFAFieldImpl::moScriptTable

© siberas 2016 | 26 / 65

 What do we need to know about objects?

• How to identify an object in memory

• Vtable offsets

• Methods and properties exposed to JavaScript

• Offsets of the entrypoints for methods / property-
getters and -setters

• Function names of vtable entries

XFA Internals - Objects

TODO…
Not trivial… ;-(

© siberas 2016 | 27 / 65

 Most allocations in AcroForm.api are managed by a
custom allocator called jfCacheManager

 LIFO-style heap manager

 Data buffers („blocks“) stored in big heap „chunks“

 Introduced most likely for performance reasons

 No security features…

• No Heap Isolation (see IE, Flash, etc.)

• No Anti-UAF like MemProtect/MemGC

• …

XFA Internals - jfCacheManager

© siberas 2016 | 28 / 65

Disclaimer: Next slides will only cover the relevant
details of the memory manager in terms of
exploitation!

(More in-depth analysis will be covered by a paper
which will be released soon)

XFA Internals - jfCacheManager

© siberas 2016 | 29 / 65

 Very simplified version of the jfCacheManager:

XFA Internals - jfCacheManager

Allocator structures:
 jfCacheManager
 jfMemoryCacheList
 jfMemoryCache

<Object>

„BBBB“

<Field-Object>

„AAAAA…“

<Text-Object>

„Chunk“
(big container)

„Block“
(small data buffers)

size X

size Y

© siberas 2016 | 30 / 65

XFA Internals - jfCacheManager
Storage of allocations
of size < 0x100

jfMemCacheList

0x0 vtable

[…]

0x8 Ptr to Allocs >= 0x100

[…]

0x18 jfMemoryCacheList*
size 0x1

jfMemoryCacheList*
size 0x2

[…]

jfMemoryCacheList*
size 0xFF

0x418 -
0x434 .

[…]

jfCacheManager

0x100
entries

Array of jfMemoryCache*

jfMemCache* jfMemCache*

jfMemCache* jfMemCache*

[…] […]

Array of
jfMemoryCache*

Array of
jfMemoryCache*

CHUNK
(BLOCK-
SIZE 0x1)

jfMemoryCache

jfMemoryCache

jfMemoryCache

jfMemoryCache

CHUNK
(BLOCK-
SIZE 0x1)

CHUNK
(BLOCK-
SIZE 0x2)

CHUNK
(BLOCK-

SIZE 0xFF)

jfMemCacheList

jfMemCacheList

jfMemoryCache and the chunks
will be relevant for exploitation!

© siberas 2016 | 31 / 65

 sizeof(chunk) derived from block size:

Example: allocation size = 0x64

=> chunksize = 26 * (0xc3b3 / 0x64) * 4 = 0xcb20

 „So, if I get a crash and I see my object located in a
chunk of size 0xcb20, then sizeof(obj) == 0x64?“

• Unfortunately not…

base_size = 0xc350 // 50.000
chunksize = ((((size + 3) / 4) + 1) * ((base_size + size - 1) / size)) * 4

XFA Internals - jfCacheManager

© siberas 2016 | 32 / 65

 jfMemoryCacheLists can manage blocks of multiple sizes
=> blocks of sizes X and Y can both end up in chunk Z!

 alloc(X) will be placed in same chunk as alloc(Y) if

• an allocation for a size Y > X has occured before and

• size X is in the same „range“ as size Y

• Ranges reach from 2n to (2n+1-1) (e.g. 0x20 - 0x3f, 0x40 - 0x7f)

 In short:

• Does the new block fit into some chunk that we already have?

• If yes, use that chunk instead of allocating a new one!

XFA Internals - jfCacheManager

© siberas 2016 | 33 / 65

XFA Internals - jfCacheManager

0x0 vtable

[…]

0x8 Ptr to Allocs >= 0x100

[…]

0x18 jfMemoryCacheList*
size 0x1

[…]

0x138

[…]

0x1a8 jfMemoryCacheList*
size 0x64

[…]

jfMemoryCacheList*
size 0xFF

0x418 -
0x434 .

[…]

jfCacheManager

Array of
jfMemoryCache*

jfMemoryCachejfMemCacheList

Object X (size 0x64)

Object Y (size 0x48)

String of length Z (size 0x64)

Object of size 0x48 fits into
chunk with block size 0x64

jfMemoryCacheList*
size 0x48

© siberas 2016 | 34 / 65

 Let‘s take a look at the structures within the chunks
and what happens during alloc / free operations…

XFA Internals - jfCacheManager

© siberas 2016 | 35 / 65

0x0 block size = 0x10

0x4 max_entries

[…]

0xc chunk**

[…]

0x1C alloc_count = 0

0x20 next_alloc_ptr

0x24 jfCacheMgr*

XFA Internals - jfCacheManager

jfMemoryCache

0x00 flink

0x10 flink

0x20 flink

0x30 flink

0x40

0x50 flink

flink

… … … ..

Chunk (block size 0x10, chunk size 0xf424)

 next_alloc_ptr points to the block which will be returned with
the next allocation

 flinks form a single linked list separating the data blocks

block of
size 0x10

Initial state – All blocks are free

© siberas 2016 | 36 / 65

0x0 block size = 0x10

0x4 max_entries

[…]

0xc chunk**

[…]

0x1C alloc_count = 1

0x20 next_alloc_ptr

0x24 jfCacheMgr*

XFA Internals - jfCacheManager

jfMemoryCache

0x00 jfMC* AAAA BBBB CCCC

0x10 DDDD flink

0x20 flink

0x30 flink

0x40

0x50 flink

flink

… … … ..

Chunk (block size 0x10, chunk size 0xf424)

 next_alloc_ptr is overwritten with flink
 flink is overwritten with pointer back to jfMemoryCache
 allocs_counter is incremented to 1

After first allocation

© siberas 2016 | 37 / 65

0x0 block size = 0x10

0x4 max_entries

[…]

0xc chunk**

[…]

0x1C alloc_count = 2

0x20 next_alloc_ptr

0x24 jfCacheMgr*

XFA Internals - jfCacheManager

jfMemoryCache

0x00 jfMC* AAAA BBBB CCCC

0x10 DDDD jfMC* EEEE FFFF

0x20 GGGG HHHH flink

0x30 flink

0x40

0x50 flink

flink

… … … ..

Chunk (block size 0x10, chunk size 0xf424)

 next_alloc_ptr is overwritten with flink
 flink is overwritten with pointer back to jfMemoryCache
 allocs_counter is incremented to 2

After second allocation

© siberas 2016 | 38 / 65

0x0 block size = 0x10

0x4 max_entries

[…]

0xc chunk**

[…]

0x1C alloc_count = 3

0x20 next_alloc_ptr

0x24 jfCacheMgr*

XFA Internals - jfCacheManager

jfMemoryCache

0x00 jfMC* AAAA BBBB CCCC

0x10 DDDD jfMC* EEEE FFFF

0x20 GGGG HHHH jfMC* IIII

0x30 JJJJ KKKK LLLL flink

0x40

0x50 flink

flink

… … … ..

Chunk (block size 0x10, chunk size 0xf424)

 next_alloc_ptr is overwritten with flink
 flink is overwritten with pointer back to jfMemoryCache
 allocs_counter is incremented to 3

After third allocation

© siberas 2016 | 39 / 65

0x0 block size

0x4 max_entries

[…]

0xc chunk**

[…]

0x1C alloc_count = 2

0x20 next_alloc_ptr

0x24 jfCacheMgr*

XFA Internals - jfCacheManager

jfMemoryCache

0x00 jfMC* AAAA BBBB CCCC

0x10 DDDD flink

0x20 jfMC* IIII

0x30 JJJJ KKKK LLLL flink

0x40

0x50 flink

flink

… … … ..

Chunk (block size 0x10, chunk size 0xf424)

 next_alloc_ptr is overwritten with pointer to free block - 4
 jfMC* is overwritten with next_alloc_ptr (becomes flink again)
 allocs_counter is decremented to 2

Free second block

© siberas 2016 | 40 / 65

 Still don‘t like the jfCacheManager?

 Still missing Page Heap?

Get offset „jfCacheManager_active“ with
XFAnalyze_funcs.py

 Change byte from 1 to 0 in binary

 Replace original AcroForm.api

 You just switched off the jfCacheManager :P

XFA Internals - jfCacheManager

© siberas 2016 | 41 / 65

Exploiting the Reader

© siberas 2016 | 42 / 65

Exploiting the Reader

Understand
the Bug

Understand
the Heap

Know your
Corruption
Targets

 Goals

• Bypass ASLR by corrupting specific byte(s) to cause a
memory leak

• Find „flexible“ overwrite target

• No need for a write-what-where (e.g. 0-DWORD write or a
partial overwrite to a controlled address should suffice!)

• Find technique which is fast, reliable and most
importantly independant from OS and AR version

© siberas 2016 | 43 / 65

 Let‘s target the metadata contained within the chunks!

 Two possibilities:

 Both methods can be abused create a memory leak!
But hitting the flink is the easiest way to go

Exploiting the Reader

0x00 jfMC* 61616161 61616161 61616161

0x10 61616161 flink

0x20 jfMC* 63636363

0x30 63636363 63636363 63636363 flink

0x40

0x50 flink

flink

… … … …

Chunk

Hit the jfMemoryCache*
 Block is allocated
 Triggers when block is

freed

Hit a flink
 Block is free
 Triggers when block is

allocated

© siberas 2016 | 44 / 65

Exploiting the Reader - Hit the flink!

0x00 flink

0x10 flink

0x20 flink

… … … …

0x0 block size

0x4 max_entries

[…]

0xc chunk**

[…]

0x1C 0

0x20 next_alloc_ptr

0x24 jfCacheMgr*

jfMemoryCache

Initial situation This is our
overwrite target!

© siberas 2016 | 45 / 65

Exploiting the Reader - Hit the flink!

0x00 „bad flink“

0x10 flink

0x20 flink

… … … …

0x0 block size

0x4 max_entries

[…]

0xc chunk**

[…]

0x1C 0

0x20 next_alloc_ptr

0x24 jfCacheMgr*

jfMemoryCache

After flink overwrite

 Requirement: flink must point to controlled data after overwrite

 Still very flexible: Doable with nearly any kind of mem corruption!

 Let‘s see what happens when we allocate the „bad“ block

0x00 Attacker- Controlled Data

0x10

0x20

… … … …

© siberas 2016 | 46 / 65

0x00 jfMC* AAAA BBBB CCCC

0x10 DDDD flink

0x20 flink

… … … …

 next_alloc_ptr is overwritten with the „bad“ flink

 flink is overwritten with pointer back to jfMemoryCache

 Now what happens when we allocate an object of size 0x10…?

Exploiting the Reader - Hit the flink!

0x0 block size

0x4 max_entries

[…]

0xc chunk**

[…]

0x1C 1

0x20 next_alloc_ptr

0x24 jfCacheMgr*

jfMemoryCache

0x00 „flink“

0x10

0x20

… … … …

After allocation of
block with „bad“ flink

© siberas 2016 | 47 / 65

0x00 jfMC* AAAA BBBB CCCC

0x10 DDDD flink

0x20 flink

… … … …

 Next allocation will return the data buffer after the „flink“

 The object will be placed in the middle of our controlled data
=> We get a vtable in controlled data!!

Exploiting the Reader - Hit the flink!

0x0 block size

0x4 max_entries

[…]

0xc chunk**

[…]

0x1C 1

0x20 next_alloc_ptr

0x24 jfCacheMgr*

jfMemoryCache

0x00 jfMC* VTABLE refcount <objdata>

0x10 <objdata>

0x20

… … … …

Allocate an object

© siberas 2016 | 48 / 65

Exploiting the Reader - Hit the flink!

 As soon as the vtable is in a controlled area you can
just read it out

 The controlled data area can be sprayed with strings
or even float arrays as „landing zone“

 Set the overwritten float or replace the string with
data which will point to your ROP pivot gadget

 For floats: You can compute their binary
represenation after spec IEEE754:

• 4.18356164518379836860971488084E-216 will be
0x13371337deadc0de on the heap

 GAME OVER!

© siberas 2016 | 49 / 65

Exploiting the Reader

Let‘s have a look at a practical example…

Setting:

A 0-DWORD write primitive to an arbitrary address

Exploitation of a 0-DWORD write has
been presented @ SyScan360
Check out my slides if you‘re interested ;)

© siberas 2016 | 50 / 65

 Let‘s make it harder than 0-DWORD overwrite

 For Infiltrate: Let‘s exploit ZDI-CAN-3507

 Originally planned for Pwn2Own 2016…

 Obvious: I can‘t reveal any information about the bug

 But I can describe the exploit methodology

• At least the basic steps

 WARNING:

• The bug is ugly...

• But: That makes it a great example to showcase the
flexibility of the described flink overwrite technique!

Exploiting the Reader

© siberas 2016 | 51 / 65

Exploiting the Reader - ZDI-CAN-3507

Setting:

Write primitive of an object-pointer (non-XFA)
to an arbitrary address

!!
We can only write to an address

where we have a 0-DWORD

cmp [ecx], 0 // ecx is under control!
jnz <no_write>
*ecx = alloc_some_nonXFA_object()

© siberas 2016 | 52 / 65

Exploiting the Reader - ZDI-CAN-3507

 Plan: Bypass ASLR by only triggering the vuln twice

• First shot to derive information about the heap layout

• Second shot to attack the flink

 First part is easy: Hit floating point arrays!

• We can‘t shoot into heap spray of strings: No 0-DWORD…

• Push value 1.59275155158737554072477261984e-315
into arrays => Results in binary pattern (after spec IEEE754)

13371337 00000000 13371337 00000000
13371337 00000000 13371337 00000000 …

© siberas 2016 | 53 / 65

Array X-1 Array X+1

 First shot will go to 0x10101014, this will be mapped
by the array heap spray

Exploiting the Reader - ZDI-CAN-3507

Array X-2

First shot @
0x10101014

hits a 0-DWORD

13371337 00000000 13371337 00000000
13371337 00000000 13371337 00000000
13371337 00000000 13371337 00000000
13371337 00000000 13371337 00000000
13371337 00000000 13371337 00000000
13371337 00000000 13371337 00000000
13371337 00000000 13371337 00000000
13371337 00000000 13371337 00000000
…

13371337 00000000

© siberas 2016 | 54 / 65

Array X-1 Array X+1

Exploiting the Reader - ZDI-CAN-3507

Array X-2

Successful overwrite
gives us base address

of Array X

13371337 00000000 13371337 00000000
13371337 00000000 13371337 00000000
13371337 00000000 13371337 00000000
13371337 AABBCCDD 13371337 00000000
13371337 00000000 13371337 00000000
13371337 00000000 13371337 00000000
13371337 00000000 13371337 00000000
13371337 00000000 13371337 00000000
…

…and now we also know
base addresses of Arrays

X-1, X-2, X+1, X+2,…!

13371337 AABBCCDD

© siberas 2016 | 55 / 65

Exploiting the Reader - ZDI-CAN-3507

 Now we need to overwrite a flink

• A flink is an address, obviously != 0, but we can only write
to an address where we have a 0-DW...

 Solution: Partial overwrite a flink which ends on 00‘s!

• Let‘s manipulate the flink so that it is shifted into a
neighboring float array!

• When an object allocation with the „bad flink“ occurs, the
object (and hence the vtable) is placed into the float array

 So how do I know where my flinks are in memory?

 And how do I know in where I can find the chunk that
contains the flink ending on 00‘s (our target flink)??

© siberas 2016 | 56 / 65

Exploiting the Reader - ZDI-CAN-3507

Array Buffer ZArray Buffer Z-1 Array Buffer Z+1

FREE IT

[…]

jfMC* Block data

jfMC* Block data

Free buffer

Allocate enough
jfCache objects to
cause allocation of

new chunk
=> Array replaced!

flink

Free bufferflink

© siberas 2016 | 57 / 65

Exploiting the Reader - ZDI-CAN-3507

[…]

jfMC* Block data

jfMC* Block data

Free buffer

Free bufferflink

Array buffer Z-1

We know the array
base address

=> We know the
flink addresses if

we replace Array Z!

Now we can find a suitable flink
ending on 00‘s

=> This will be the overwrite target!

flink

jfMC* Block data

jfMC* Block data

Free buffer

Free bufferflink

flink

[…]

=> We know the
flink addresses if we
replace Array Z+n!

© siberas 2016 | 58 / 65

Exploiting the Reader - ZDI-CAN-3507

 Knowing the flink addresses we need to search a flink
of form 0xXXYY0000

• Why not 00? You won‘t shift the flink into the next array!

• Why not 000000? Very unlikely to find such a flink!

 Lower 16 bits of the flink will be overwritten with
upper 16 bits of the object pointer

 Let‘s assume write of object pointer == 0x09204060

00000000 0000YYXX

flink Partial
overwrite

00006040 2009YYXX

© siberas 2016 | 59 / 65

 Partial overwrite: 0xXXYY0000 => 0xXXYY0920

 Flink will be shifted 0x920 bytes in this case

• Flink should be located near to the end of the chunk so
that after the overwrite it points to the next Array Z+1!

Exploiting the Reader - ZDI-CAN-3507

Array Z+1[…]

jfMC* Block data

jfMC* Block data

Free bufferflink

Free bufferflink

Array Z-1

© siberas 2016 | 60 / 65

 When the block with the overwritten flink is allocated
the data is placed in Array Z+1

 If an object is allocated the vtable will be placed there
ready to be read => ASLR bypassed! =)

Exploiting the Reader - ZDI-CAN-3507

Array X+1[…]

jfMC* Block data

jfMC* Block data

Free bufferflink

Free bufferflink

Array X-1
jfMC* VTABLE objdata objdata

objdata objdata … …

© siberas 2016 | 61 / 65

Exploiting the Reader - ZDI-CAN-3507

 And RCE??

 Super easy!

• Locate the vtable pointer by finding the overwritten float
value in Array Z+1

• Overwrite this float value so that we hit our stack pivot
with the next vtable call

• Reference the object with the overwritten vtable pointer
to cause a vtable call and jump into your ROP

 GAME OVER.

© siberas 2016 | 62 / 65

Demo

© siberas 2016 | 63 / 65

Conclusion

© siberas 2016 | 64 / 65

 Very easy, but highly effective technique to leak data

 No global RW primitive, but enough to pwn AR

 Version-independant

 OS-independant

 Very fast: From start to pwn in ~ 1 sec possible
• ZDI-CAN-3507 slow because vuln needs time to trigger

 Flexible technique which can be used with almost
every kind of overwrite (as we have just seen)

 Custom allocator proves once again to be a perfect
target in memory corruption scenarios

Conclusion

© siberas 2016 | 65 / 65

Q&A

Thank you for your attention!

